Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Curr Res Toxicol ; 6: 100160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469320

RESUMO

Pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) are phytotoxins found in food, feed and the environment. Yet, limited data exist from which the relative potency of a PA-N-oxide relative to its corresponding PA (REPPANO to PA) can be defined. This study aims to investigate the influence of dose, fraction bioactivated and endpoint on the REPPANO to PA of a series of pyrrolizidine N-oxides using in vitro-in silico data and physiologically based kinetic (PBK) modeling. The first endpoint used to calculate the REPPANO to PA was the ratio of the area under the concentration-time curve of PA resulting from an oral dose of PA-N-oxide divided by that from an equimolar dose of PA (Method 1). The second endpoint was the ratio of the amount of pyrrole-protein adducts formed under these conditions (Method 2). REPPANO to PA values appeared to decrease with increasing dose, with the decrease for Method 2 already starting at lower dose level than for Method 1. At dose levels as low as estimated daily human intakes, REPPANO to PA values amounted to 0.92, 0.81, 0.78, and 0.68 for retrorsine N-oxide, seneciphylline N-oxide, riddelliine N-oxide and senecivernine N-oxide, respectively, and became independent of the dose or fraction bioactivated, because no GSH depletion, saturation of PA clearance or PA-N-oxide reduction occurs. Overall, the results demonstrate the strength of using PBK modeling in defining REPPANO to PA values, thereby substantiating the use of the same approach for other PA-N-oxides for which in vivo data are lacking.

2.
ALTEX ; 41(1): 20-36, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37528756

RESUMO

Bile acid homeostasis is vital for numerous metabolic and immune functions in humans. The enterohepatic circulation of bile acids is extremely efficient, with ~95% of intestinal bile acids being reabsorbed. Disturbing intestinal bile acid uptake is expected to substantially affect intestinal and systemic bile acid levels. Here, we aimed to predict the effects of apical sodium-dependent bile acid transporter (ASBT)-inhibition on systemic plasma levels. For this, we combined in vitro Caco-2 cell transport assays with physiologically based (PBK) modeling. We used the selective ASBT-inhibitor odevixibat (ODE) as a model compound. Caco-2 cells grown on culture inserts were used to obtain transport kinetic parameters of glycocholic acid (GCA). The apparent Michaelis-Menten constant (Km,app), apparent maximal intestinal transport rate (Vmax,app), and ODE's inhibitory constant (Ki) were determined for GCA. These kinetic parameters were incorporated into a PBK model and used to predict the ASBT inhibition effects on plasma bile acid levels. GCA is transported over Caco-2 cells in an active and sodium-dependent manner, indicating the presence of functional ASBT. ODE inhibited GCA transport dose-dependently. The PBK model predicted that oral doses of ODE reduced conjugated bile acid levels in plasma. Our simulations match in vivo data and provide a first proof-of-principle for the incorporation of active intestinal bile acid uptake in a bile acid PBK model. This approach could in future be of use to predict the effects of other ASBT-inhibitors on plasma and intestinal bile acid levels.


Bile acids regulate digestion and immune functions. Too little bile acid reuptake in the gut is related to several diseases, including inflammatory bowel disease. This study investigates how reducing bile acid absorption affects bile acid levels in humans using the drug odevixibat (ODE) as an example. ODE reduces bile acid absorption by blocking the intestinal bile acid transporter protein in gut cells. The transport of a bile acid through a gut cell line commonly used to model the intestinal barrier was measured with and without ODE, and mathematical modeling was used to translate the laboratory results to whole-body effects. This combined approach accurately predicted the known effects of ODE on intestinal and bloodstream bile acid levels in humans. This novel approach could be used to predict the effects of other chemicals on intestinal bile acid absorption and intestinal and bloodstream bile acid levels instead of animal testing.


Assuntos
Ácidos e Sais Biliares , Intestinos , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Transporte Biológico , Mucosa Intestinal/metabolismo
3.
Arch Toxicol ; 98(2): 551-565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085275

RESUMO

The present study evaluates the in vitro developmental toxicity and the possible underlying mode of action of DMSO extracts of a series of highly complex petroleum substances in the mouse embryonic stem cell test (mEST), the zebrafish embryotoxicity test (ZET) and the aryl hydrocarbon receptor reporter gene assay (AhR CALUX assay). Results show that two out of sixteen samples tested, both being poorly refined products that may contain a substantial amount of 3- to 7-ring polycyclic aromatic compounds (PACs), induced sustained AhR activation in the AhR CALUX assay, and concentration-dependent developmental toxicity in both mEST and ZET. The other samples tested, representing highly refined petroleum substances and petroleum-derived waxes (containing typically a very low amount or no PACs at all), were negative in all assays applied, pointing to their inability to induce developmental toxicity in vitro. The refining processes applied during the production of highly refined petroleum products, such as solvent extraction and hydrotreatment which focus on the removal of undesired constituents, including 3- to 7-ring PACs, abolish the in vitro developmental toxicity. In conclusion, the obtained results support the hypothesis that 3- to 7-ring PACs are the primary inducers of the developmental toxicity induced by some (i.e., poorly refined) petroleum substances and that the observed effect is partially AhR-mediated.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Camundongos , Animais , Petróleo/toxicidade , Petróleo/análise , Peixe-Zebra , Células-Tronco Embrionárias Murinas
4.
J Agric Food Chem ; 72(1): 761-772, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131302

RESUMO

Current points of departure used to derive health-based guidance values for deoxynivalenol (DON) are based on studies in laboratory animals. Here, an animal-free testing approach was adopted in which a reverse dosimetry physiologically based kinetic (PBK) modeling is used to predict in vivo dose response curves for DON's effects on intestinal pro-inflammatory cytokine secretion and intestinal bile acid reabsorption in humans from concentration-effect relationships for DON in vitro. The calculated doses for inducing a 5% added effect above the background level (ED5) of DON for increasing IL-1ß secretion in intestinal tissue and for increasing the amounts in the colon lumen of glycochenodeoxycholic acid (GCDCA) were 246 and 36 µg/kg bw/day, respectively. These in vitro-in silico-derived ED5 values were compared to human dietary DON exposure levels, indicating that the risk of DON's effects on these end points occurring in various human populations cannot be excluded. This in vitro-in silico approach provides a novel testing strategy for hazard and risk assessment without using laboratory animals.


Assuntos
Modelos Biológicos , Tricotecenos , Animais , Humanos , Intestinos , Inflamação
5.
Food Chem X ; 20: 100920, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144772

RESUMO

This study aimed to characterize the methylglyoxal (MGO) scavenging capacity of glutathione (GSH) and kaempferol in more detail with special emphasis on the possible reversible nature of the adduct formation and their competition for MGO, and the safety consequences of their MGO-scavenging effects. GSH showed immediate and concentration-dependent MGO-scavenging effects, while the scavenging effects by kaempferol appeared concentration- but also time-dependent, with stable adducts formed over time. The GSH adduct gradually disappeared in a competition reaction with kaempferol, and kaempferol became the preferred scavenger over time. Furthermore, the scavenging of MGO by kaempferol provided better protection than GSH against extracellular MGO in SH-SY5Y cells. It is concluded that flavonoids like kaempferol provide better scavengers for food-borne MGO than thiol-based scavengers such as GSH, while, given the endogenous concentrations of both scavengers and the detoxification of the GSH-MGO adduct by the glyoxalase system, GSH will be dominant for intracellular MGO protection.

6.
Environ Sci Technol ; 57(49): 20521-20531, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008925

RESUMO

Worldwide use of organophosphate pesticides as agricultural chemicals aims to maintain a stable food supply, while their toxicity remains a major public health concern. A common mechanism of acute neurotoxicity following organophosphate pesticide exposure is the inhibition of acetylcholinesterase (AChE). To support Next Generation Risk Assessment for public health upon acute neurotoxicity induced by organophosphate pesticides, physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach was employed in this study, with fenitrothion (FNT) as an exemplary organophosphate pesticide. Rat and human PBK models were parametrized with data derived from in silico predictions and in vitro incubations. Then, PBK model-based QIVIVE was performed to convert species-specific concentration-dependent AChE inhibition obtained from in vitro blood assays to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived. The obtained values for rats and humans were comparable with reported no-observed-adverse-effect levels (NOAELs). Humans were found to be more susceptible than rats toward erythrocyte AChE inhibition induced by acute FNT exposure due to interspecies differences in toxicokinetics and toxicodynamics. The described approach adequately predicts toxicokinetics and acute toxicity of FNT, providing a proof-of-principle for applying this approach in a 3R-based chemical risk assessment paradigm.


Assuntos
Acetilcolinesterase , Praguicidas , Ratos , Humanos , Animais , Fenitrotion/toxicidade , Modelos Biológicos
7.
Biomedicines ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37893032

RESUMO

The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.

8.
Toxicol Lett ; 388: 30-39, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806368

RESUMO

Including active renal excretion in physiologically based kinetic (PBK) models can improve their use in quantitative in vitro- in vivo extrapolation (QIVIVE) as a new approach methodology (NAM) for predicting the acute toxicity of organic cation transporter 2 (OCT2) substrates like paraquat (PQ). To realise this NAM, kinetic parameters Vmax and Km for in vitro OCT2 transport of PQ were obtained from the literature. Appropriate scaling factors were applied to translate the in vitro Vmax to an in vivo Vmax. in vitro cytotoxicity data were defined in the rat RLE-6TN and L2 cell lines and the human A549 cell line. The developed PQ PBK model was used to apply reverse dosimetry for QIVIVE translating the in vitro cytotoxicity concentration-response curves to predicted in vivo toxicity dose-response curves after which the lower and upper bound benchmark dose (BMD) for 50% lethality (BMDL50 and BMDU50) were derived by applying BMD analysis. Comparing the predictions to the in vivo reported LD50 values resulted in a conservative prediction for rat and a comparable prediction for human showing proof of principle on the inclusion of active renal excretion and prediction of PQ acute toxicity for the developed NAM.


Assuntos
Modelos Biológicos , Paraquat , Ratos , Humanos , Animais , Paraquat/toxicidade , Transportador 2 de Cátion Orgânico , Eliminação Renal , Linhagem Celular
10.
Antioxidants (Basel) ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37627539

RESUMO

Purpurin is a major anthraquinone present in the roots of Rubia cordifolia (madder). Purpurin is known to activate Nrf2 (Nuclear transcription factor erythroid 2-related factor 2) EpRE (electrophile responsive element) mediated gene expression as a potential beneficial effect. This study aimed to elucidate the balance between the electrophilicity or pro-oxidant activity of purpurin underlying the Nrf2 induction. For this, Nrf2 activation with modified intracellular glutathione (GSH) levels was measured in an Nrf2 CALUX reporter gene assay. In addition, both cell-free and intracellular ROS formation of purpurin with modified (intracellular) GSH levels at different pH were quantified using the DCF-DA assay. GSH adduct formation was evaluated by UPLC and LC-TOF-MS analysis. GSH and GSSG levels following purpurin incubations were quantified by LC-MS/MS. We show that Nrf2 induction by purpurin was significantly increased in cells with buthionine sulfoximine depleted GSH levels, while Nrf2 induction was decreased upon incubation of the cells with N-acetylcysteine being a precursor of GSH. In cell-free incubations, ROS formation increased with increasing pH pointing at a role for the deprotonated form of purpurin. Upon incubations of purpurin with GSH at physiological pH, GSH adduct formation appeared negligible (<1.5% of the added purpurin). The addition of GSH resulted in conversion of GSH to GSSG and significantly reduced the ROS formation. Together these results demonstrate that Nrf2 induction by purpurin originates from intracellular ROS formation and not from its electrophilicity, which becomes especially relevant when intracellular GSH levels can no longer scavenge the ROS. The present study demonstrated that the efficiency of intracellular Nrf2 activation by purpurin and related anthraquinones will depend on (i) their pKa and level of deprotonation at the intracellular pH, (ii) the oxidation potential of their deprotonated form and (iii) the intracellular GSH levels. Thus, the Nrf2 induction by purpurin depends on its pro-oxidant activity and not on its electrophilicity.

11.
Food Addit Contam Part B Surveill ; 16(3): 301-309, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37448098

RESUMO

Pyrrolizidine alkaloids (PAs) are noted for their hepatotoxic, genotoxic, and carcinogenic effects in animals and humans following metabolic activation in the liver. In this study, herbal supplements sold in Ghana for sexual improvement were analysed for the presence of 64 PAs using LC-MS/MS analysis. Up to 17 different PAs were identified in 19 out of the 37 samples analysed. The sum of PAs in samples ranged from 5 to 3204 µg kg-1. Since the PA content in the herbal medicinal preparations was generally lower than in honey samples, their presence was mainly attributed to cross-contamination. The observed levels would result in estimated daily intakes from 0.01 to 12 µg per day or 0.0002 to 0.2 µg kg-1 bw day-1 for a person weighing 70 kg. The margins of exposure ranged from 1200 to 1,400,000 with eight samples showing values below 10,000, thus indicating a health concern.


Assuntos
Alcaloides de Pirrolizidina , Humanos , Animais , Alcaloides de Pirrolizidina/análise , Cromatografia Líquida , Gana , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Suplementos Nutricionais/análise
12.
Environ Sci Technol ; 57(30): 10974-10984, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478462

RESUMO

Current climate trends are likely to expand the geographic distribution of the toxigenic microalgae and concomitant phycotoxins, making intoxications by such toxins a global phenomenon. Among various phycotoxins, saxitoxin (STX) acts as a neurotoxin that might cause severe neurological symptoms in mammals following consumptions of contaminated seafood. To derive a point of departure (POD) for human health risk assessment upon acute neurotoxicity induced by oral STX exposure, a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach was employed. The PBK models for rats, mice, and humans were built using parameters from the literature, in vitro experiments, and in silico predictions. Available in vitro toxicity data for STX were converted to in vivo dose-response curves via the PBK models established for these three species, and POD values were derived from the predicted curves and compared to reported in vivo toxicity data. Interspecies differences in acute STX toxicity between rodents and humans were found, and they appeared to be mainly due to differences in toxicokinetics. The described approach resulted in adequate predictions for acute oral STX exposure, indicating that new approach methodologies, when appropriately integrated, can be used in a 3R-based chemical risk assessment paradigm.


Assuntos
Modelos Biológicos , Saxitoxina , Ratos , Camundongos , Humanos , Animais , Saxitoxina/toxicidade , Mamíferos
13.
Food Chem Toxicol ; 179: 113940, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487858

RESUMO

In recent years, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has conducted a program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavor ingredients. This publication, twelfth in the series, details the re-evaluation of NFCs whose constituent profiles are characterized by alicyclic or linear ketones. In its re-evaluation, the Expert Panel applies a scientific constituent-based procedure for the safety evaluation of NFCs in commerce using a congeneric group approach. Estimated intakes of each congeneric group of the NFC are evaluated using the well-established and conservative Threshold of Toxicological Concern (TTC) approach. In addition, studies on the toxicity and genotoxicity of members of the congeneric groups and the NFCs under evaluation are reviewed. The scope of the safety evaluation of the NFCs contained herein does not include added use in dietary supplements or any products other than food. Thirteen (13) NFCs derived from the Boronia, Cinnamomum, Thuja, Ruta, Salvia, Tagetes, Hyssopus, Iris, Perilla and Artemisia genera are affirmed as generally recognized as safe (GRAS) under conditions of their intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Produtos Biológicos , Tagetes , Aromatizantes , Indústria Alimentícia , Suplementos Nutricionais , Extratos Vegetais
14.
Food Chem Toxicol ; 176: 113802, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116774

RESUMO

Hydroxyanthraquinones that can be present in traditional Chinese medicine (TCM) and herbal extracts have claimed beneficial intestinal effects. We examined the ability of a panel hydroxyanthraquinones, and methanolic extracts from selected TCM and herbal granules to activate Nrf2-EpRE mediated gene expression using a reporter-gene assay. The results indicate that purpurin, aloe-emodin, 2-hydroxy-3-methylanthraquinone and rhein induced Nrf2 mediated gene expressions with a high induction factor (IFs>10), with BMCL10 values (the lower confidence limit of the concentration giving 10% added response above background) of 16 µM, 1.1 µM, 23 µM and 2.3 µM, respectively, while aurantio-obtusin, obtusifolin, rubiadin 1-methyl ether and emodin were less potent (IFs<5), with BMCL10 values for added response above background level of 4.6 µM, 15 µM, 9.8 µM and 3.8 µM, respectively. All TCM extracts and the herbal extracts of Aloe Vera, Polygonum multiflorum, Rubia (cordifolia) and Rheum officinale activated the Nrf2-EpRE pathway. Of the TCM extracts, Chuan-Xin-Lian-Kang-Yan-Pian was the most potent Nrf2-inducer. LC-MS/MS analysis indicated the presence of selected hydroxyanthraquinones in the extracts and herbs, in part explaining their Nrf2-EpRE mediated activity. In conclusion, different hydroxyanthraquinones have different potencies of Nrf2 activation. The Nrf2 activation by extracts from TCM and herbs can be partially explained by the presence of selected hydroxyanthraquinones.


Assuntos
Emodina , Medicina Tradicional Chinesa , Fator 2 Relacionado a NF-E2/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Expressão Gênica
15.
Arch Toxicol ; 97(6): 1547-1575, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087486

RESUMO

In next generation risk assessment (NGRA), the Dietary Comparator Ratio (DCR) can be used to assess the safety of chemical exposures to humans in a 3R compliant approach. The DCR compares the Exposure Activity Ratio (EAR) for exposure to a compound of interest (EARtest) to the EAR for an established safe exposure level to a comparator compound (EARcomparator), acting by the same mode of action. It can be concluded that the exposure to a test compound is safe at a corresponding DCR ≤ 1. In this study, genistein (GEN) was selected as a comparator compound by comparison of reported safe internal exposures to GEN to its BMCL05, as no effect level, the latter determined in the in vitro estrogenic MCF7/Bos proliferation, T47D ER-CALUX, and U2OS ERα-CALUX assay. The EARcomparator was defined using the BMCL05 and EC50 values from the 3 in vitro assays and subsequently used to calculate the DCRs for exposures to 14 test compounds, predicting the (absence of) estrogenicity. The predictions were evaluated by comparison to reported in vivo estrogenicity in humans for these exposures. The results obtained support in the DCR approach as an important animal-free new approach methodology (NAM) in NGRA and show how in vitro assays can be used to define DCR values.


Assuntos
Estrogênios , Receptores de Estrogênio , Humanos , Estrogênios/toxicidade , Linhagem Celular Tumoral , Genisteína/toxicidade , Medição de Risco
16.
Chem Biol Interact ; 375: 110445, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36889625

RESUMO

Bile acid metabolism and transport are critical to maintain bile acid homeostasis and host health. In this study, it was investigated if effects on intestinal bile acid deconjugation and transport can be quantified in vitro model systems using mixtures of bile acids instead of studying individual bile acids. To this end deconjugation of mixtures of selected bile acids in anaerobic rat or human fecal incubations and the effect of the antibiotic tobramycin on these reactions was studied. In addition, the effect of tobramycin on the transport of the bile acids in isolation or in a mixture across Caco-2 cell layers was characterized. The results demonstrate that both the reduction of bile acid deconjugation and transport by tobramycin can be adequately detected in vitro systems using a mixture of bile acids, thus eliminating the need to characterize the effects for each bile acid in separate experiments. Subtle differences between the experiments with single or combined bile acids point at mutual competitive interactions and indicate that the use of bile acid mixtures is preferred over use of single bile acid given that also in vivo bile acids occurs in mixtures.


Assuntos
Ácidos e Sais Biliares , Intestinos , Ratos , Humanos , Animais , Células CACO-2 , Fezes , Homeostase
17.
Front Pharmacol ; 14: 1125146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937884

RESUMO

Over 1,000 pyrrolizidine alkaloids (PAs) and their N-oxides (PA-N-oxides) occur in 3% of all flowering plants. PA-N-oxides are toxic when reduced to their parent PAs, which are bioactivated into pyrrole intermediates that generate protein- and DNA-adducts resulting in liver toxicity and carcinogenicity. Literature data for senecionine N-oxide in rats indicate that the relative potency (REP) value of this PA-N-oxide compared to its parent PA senecionine varies with the endpoint used. The first endpoint was the ratio between the area under the concentration-time curve (AUC) for senecionine upon dosing senecionine N-oxide or an equimolar dose of senecionine, while the second endpoint was the ratio between the amount for pyrrole-protein adducts formed under these conditions. This study aimed to investigate the mode of action underlying this endpoint dependent REP value for senecionine N-oxide with physiologically based kinetic (PBK) modeling. Results obtained reveal that limitation of 7-GS-DHP adduct formation due to GSH depletion, resulting in increased pyrrole-protein adduct formation, occurs more likely upon high dose oral PA administration than upon an equimolar dose of PA-N-oxide. At high dose levels, this results in a lower REP value when based on pyrrole-protein adduct levels than when based on PA concentrations. At low dose levels, the difference no longer exists. Altogether, the results of the study show how the REP value for senecionine N-oxide depends on dose and endpoint used, and that PBK modeling provides a way to characterize REP values for PA-N-oxides at realistic low dietary exposure levels, thus reducing the need for animal experiments.

18.
Chem Res Toxicol ; 36(4): 598-616, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36972423

RESUMO

The diversity of microbial species in the gut has a strong influence on health and development of the host. Further, there are indications that the variation in expression of gut bacterial metabolic enzymes is less diverse than the taxonomic profile, underlying the importance of microbiome functionality, particularly from a toxicological perspective. To address these relationships, the gut bacterial composition of Wistar rats was altered by a 28 day oral treatment with the antibiotics tobramycin or colistin sulfate. On the basis of 16S marker gene sequencing data, tobramycin was found to cause a strong reduction in the diversity and relative abundance of the microbiome, whereas colistin sulfate had only a marginal impact. Associated plasma and fecal metabolomes were characterized by targeted mass spectrometry-based profiling. The fecal metabolome of tobramycin-treated animals had a high number of significant alterations in metabolite levels compared to controls, particularly in amino acids, lipids, bile acids (BAs), carbohydrates, and energy metabolites. The accumulation of primary BAs and significant reduction of secondary BAs in the feces indicated that the microbial alterations induced by tobramycin inhibit bacterial deconjugation reactions. The plasma metabolome showed less, but still many alterations in the same metabolite groups, including reductions in indole derivatives and hippuric acid, and furthermore, despite marginal effects of colistin sulfate treatment, there were nonetheless systemic alterations also in BAs. Aside from these treatment-based differences, we also uncovered interindividual differences particularly centering on the loss of Verrucomicrobiaceae in the microbiome, but with no apparent associated metabolite alterations. Finally, by comparing the data set from this study with metabolome alterations in the MetaMapTox database, key metabolite alterations were identified as plasma biomarkers indicative of altered gut microbiomes resulting from a wide activity spectrum of antibiotics.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Ratos , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Colistina/análise , Tobramicina/farmacologia , Tobramicina/análise , Ácidos e Sais Biliares/análise , Ratos Wistar , Metaboloma , Fezes/química , RNA Ribossômico 16S/genética
19.
Food Chem Toxicol ; 175: 113697, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870670

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC and organization of the constituents into congeneric groups. The safety of the NFCs is evaluated using the threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation does not include added use in dietary supplements or any products other than food. Twenty-three NFCs, derived from the Hibiscus, Melissa, Ricinus, Anthemis, Matricaria, Cymbopogon, Saussurea, Spartium, Pelargonium, Levisticum, Rosa, Santalum, Viola, Cryptocarya and Litsea genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Aromatizantes , Óleos Voláteis , Aromatizantes/toxicidade , Camomila , Indústria Alimentícia , Terpenos , Etanol
20.
Food Chem Toxicol ; 175: 113646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804339

RESUMO

In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.


Assuntos
Myristica , Ocimum basilicum , Petroselinum , Teorema de Bayes , Aromatizantes/toxicidade , Aromatizantes/química , Canadá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...